
UTILIZATION OF STRUCTUP~AL PARAMETERS TO INVESTIGATE 

THE THERMOSTRESS STATE OF A DEFORMABLE BODY UNDER PULSE HEATING 

V. S. Zarubin and G. N. Kuvyrkin UDC 536.2:539.3 

Equations to determine the temperature and stress in a solid body under nonsta- 
tionary loading are obtained from the relations of the thermodynamics of irrevers- 
ible processes with internal structural parameters. 

The intensification of thermal effects on structure elements and the creation of new 
technological processes based on utilization of high-intensity pulsed energy flows stimulate 
the creation of thermomechanical models of the behavior of the materials being used. Depend- 
ing on the loading and exploitation conditions, and the assurance of the needed accuracy of 
the computations, these models should take account of the effects of viscoelasticity, plas- 
ticity, and creep, cumulative damage, finiteness of the thermal propagation rate, etc., under 
condition of high variable temperatures. Three fundamental approaches, based on examination 
of media of velocity type, medial with memory, and media with internal structural parameters 
[i], are utilized at this time to obtain the governing equations describing the behavior of 
materials under such conditions. The most general here is the approach based on utilization 
of models of media with memory whose principal disadvantage is the mathematical formalism 
which often masks the physical crux of the phenomena under consideration. The application of 
models of media with internal structural parameters has a number of advantages associated prim- 
arily with the possibility of describing the behavior of macroscopic objects with microstruc- 
tural processes proceeding at the molecular and submolecular levels [I, 2], taken into account. 

The structural parameters can be both scalar and vector and tensor quantities. Thus, for 
crystalline materials the statistically averaged tensor quantities of dislocation and internal 
stress densities and the scalar quantity of cumulative inelastic strain [2-4] can be taken as 
the structural parameters. For materials with high-molecular structure the application of ex- 
ternal loads causes uncoiling and reorientation of the molecular chains, and redistribution 
of the number of molecular segments occurs between the ordered and disordered parts of a poly- 
mer [5]. At the macrolevel this is manifest in the form of quite definite viscous properties 
of polymers. Under conditions of highly intensive thermomechanical action, disorder of the 
structure, disturbance of the bounds between the structural elements and the formation of mi- 
crocracks, micropores, etc., occur in the material, i.e., cumulative damage. In describing 
the process of heat conduction on the basis of representations about phonon gas motion, the 
structural parameter can be associated with the vector phonon distribution function subjected 
to a kinetic equation of relaxation type [6]. In the general case, if the characteristic time 
of the change in the external load is close in magnitude to the relaxation time of the struc- 
tural parameter, taking account of the change in the internal structural parameters is neces- 
sary [7]. 

Let us assume that the thermostress state of a deformable ~@~y is determined by four 
thermodynamic functions [i, 4]: the free energy A = A(ekl, T, X ~, Xk(T) , Xk~ ~ %k ), the 

entrop S = S(ekZ , T, X (S), Xk (T) ~o) , Xk , %k ), the stress tensor, and the thermal flux density 

Xk (T) ~) %k ) and qi vector, respectively, with the components oij = oij(ekZ , T, X (S) Xk 

qi(ekZ, T, x(S), xk(T), XkZ(~ %k). 
The existence of the kinetic equations 

%~T)=" • T, %,s), Z~7), ~','(~ ek), (2) 
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.)•(a) . (o) 7(s), ~s' =x~i (st~z, T, %(~ r), Z(7 ), ~ )  (3) 

is postulated to determine the structural parameters. Moreover, at each point of the body 
there should be satisfied [i, 2, 4] 

The Conservation of Momentum Law 

pu~ - -  crj~,j : Fz; ( 4 )  

The Moment of Momentum Conservation Law 

Oij = =  ~ . 7 i ;  

The Energy Conservation Law (The First Law of Thermodynamics) 

(5) 

(6) 

The Second Law of Thermodynamics (The Clausius-Duhem Inequality) 

9 T S + T ( q d T ) , ~ - - p r ~ O .  (7) 

In the case of small deformation the continuity equation is satisfied automatically. 

If the connection between the internal and free energies U = A + TS is utilized, then 
taking a~count of the inequality (7), there follows from (6) by virtue of the arbitrariness 
of ~ij' T and Ji 

OA OA OA 
~ u - - P ' - - ,  S - -  : 0  

Ogij O T '  0 ~  (8) 

and the second law of thermodynamics acquires the form 

OA �9 (s) OA ' (r) OA �9 
o + o + o x17 ) + < o, (9) 

i.e., thekinetic equations (1)-(3) cannot be arbitrary, their specific form should be selec- 
ted with the inequality (9) taken into account. 

Taking account of (8) the energy conservation law (6) is written in the form 

pTS-t-p-~X(s 7 +9  X~ %}T)+P-~%~SOz,s + q ~ , ~ - - g r = O .  (10) 

Henceforth, not only the total deformations (eij << I), but also the temperature deforma- 
(T) (S) (T) 

tions and the structural parameters are assumed small eij << i, X << i, X i << i and 
(a) 

Xi j << i. Then the free energy can be written in a form analogous to that proposed in [8] 

for a medium with memory 
( T ) %  , r %(s), X~r), %~)) + B (T) A* (---ekl ,. (11) A (~,a, T, X (s), X~ ), X~ )) = A* (shz-  ekl, 

Furthermore, representing the first and third components in the right side of (Ii) in the 
form of a Taylor series in the corresponding arguments and limiting ourselves to quadratic 
terms in the expansions, we can write 

pA(s,a, T, % cs), X~ T), X~))=-~-Cim(s~t  ecr)~ts s (r)~ - -  h i  : ' ,  i ] - -  t/ 1"3[ -  

-- G~s% (s) (ei: ~i s 1,tjkLk 

1 ~ (r) 
- L~s~%~ "~ XI7 ~ + 9B (7 3 - -  -7- ' :~s ~ '~ '  ~ts~ k (0, T o, O, O, ._0) = O. 

(12) 
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Evidently the coefficients for the linear terms in (12) should be zero. The expressions 
for the stress tensor and the entropy will take the following form when the first two equali- 
ties from (8) are taken into account 

(YiJ ~- Cijhl  ( S h l  - - -  8 ( T ) ~  - -  Oij)~ ( S ) -  ~'~ij~Xi T) -- "/Vlijh. Iv(~ (13) 
M / 

OB 
1 (~J + C~ls(f~ ) aT a T  ' (14) S =  9 

and taking (i0) and (14) into account, another form of writing the energy conservation law 
can be obtained 

TT  "-~ ~ ---O-U J + (C~m~ht- 6~Z ~s) - -  

N :(r) . ,  :(o), &}~) _ O~B 
- -  , ijhXk - -  mLjkz/,m J T O T  - - - p i  -o-TS- "T + ( 1 5 )  

3 A  . ( s )  OA �9 OA .(~) 

All the coefficients in (12)-(15) are taken temperature-dependent. 

To obtain the energy conservation law in the form of the heat conduction equation it is 
necessary to make specific the expressions for the heat flux density vector and the structural 
parameters by taking them, say, in the form 

qi=q) /s )  z(s)H_cp}f)~(}r);  (16.) 

s,t = - -  + or - -  exp t - -  t "  dt ';  ( 1 7 )  
g "% 

t ( _r ~r )  
r~a = - - L i  -[- " or %~ r) exp ~i --oTr-  d t '  ; (18) 

" ( a )  . ( ~ )  - -  

�9 ozii =-- z~j + z~f o~ 

v / . ~(o)  
~7 ) = ~i7 ) - bf ~xp t , -  t -r.~_._.~_,/_~ x,j E .  (19) 

If it is assumed that a change in the structural parameter occurs at the constant tempera- 
ture T,, then analogously to what is proposed in [9] 

~(s) = H (r - r,), (z0) 

which corresponds to a phase transition of the first kind occurring at constant temperature. 
In this case the components of the heat flux density vector (16) undergo discontinuity, equal 
numerically to ~[s) and corresponding to the heat of the phase transition (as T S § 0). The 
stress tensor components on the surface of the phase transition_(s)a%so, undergo discontinuity 
whose magnitude will equal Gij , as will follow from (13). If X zs assumed dependent on 
r T, and O i' then the kinetic equations (17) are analogous to those examined in [i0]. In 

the general case, the process of a change in the structural parameter X (S) can be treated as 
a cumulative damage process in a material and the parameter itself as the damage [ll], where 

0 < X (s) < i. 

Since the phonon vector distribution function in the steady state is proportional to the 
temperature gradient [6] 

I z) := Z i j ~ j ,  ( 2 1 )  

then in the absence of structural changes (X (S) = 0) the equation (16), with the second rela- 
tionship from (18) and the equality (21) taken into account, takes the form 

t 
_ _ t  r '  

%(r).q, ~ (~,}T)0'j) dr ' ,  ( 2 2 )  qi : - -  ii v j  -~- exp ( t 
, o t  ' 
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corresponding to the heat propagation process at a finite velocity. The dependence (22) was 
obtained in [12] by starting from other considerations. Substituting (22) into (15) and ne- 
glecting the coherence effects by virtue of their smallness [13], and the negligible influence 
on the temperature distribution, we write the heat conduction equation in the form 

t 
pc~T= ,~(..r,T., bf exp ( t - - t '  

t zJ , 7 ] , ~ -  ,12 T 

0 
- -  -~- (X~'~)r,j),,dt' + yr. (23) 

As a rule, the relaxation time T~ is a sufficiently small quantity, and a method developed in 
[14, 15] can be used for its determination. 

(~ 
Under highly intensive loading the change in the structural parameters Xij) characterizes 

the internal viscosity of the medium being examined. Then in the absence of structural changes 

(X (S) = 0) and neglecting the influence of the heat propagation process on the stress-strain 
state (Nij k = 0) for 

- %ij (~) = Xij~z~hz (24) 

there follows from the equality (13) 

t 

' ffij=Cijkl(ghl--E(T)~--~Lihlghl-J[-blexp(----kl ! t 0, (25) 

The dependence (25) describes a standard linear medium [16], but with the~emperature deforma- 
tion taken into account. If the influence of the structural parameter X~ ) on the stress is 
not taken into account, i.e., RijkZ = 0, then (25) describes a linearly e~astic medium. 

It is expedient to analyze the role of each structural parameter separately in computa- 
tions of the temperature and stress-strain states of a body under investigation. 

The following problem 
0 = O20/OZ z, (26) 

i = o  o(z, o ) = o ~  

z --= 0 --O0/Oz = qo (0, 0 (0, t-) < 0,, qo (0 = M~mexp (--rnT); 

z---,- oo 0 (z, 7)---,- 0 
(27) 

is considered to estimate the influence of the relaxation time relationship of the structural 
parameter X (S) and the position of the maximum of the time-variable deliverable thermal flux 
pulse on the magnitude of the mass entrainment from the surface of the body being heated. 

If 6(0, t--) = 8, (~ ~,), then the boundary condition on the heated surface will be 

z = h (?) - aO/az:= qo(b - hQ,x <s) , 

[( )] X (s)(~)= 1 exp t - - t ,  g ( o - - o , ) .  
o~ (28) 

The selection of the exponent for the exponential and the coefficient M in the expression 

for qo(t--) assures the maximum of this function for ~ = 1 for all m and moreover ~q0 (0d~=l �9 
0 

The solution of the boundary value problem (26)-(28) can be obtained by the integral heat 
balance method [17], where in the first heating stage 

/ T 
1 

o (z, ~5 = -T-  q~ (T) ~1 (7)tl - z/81 (hi2, 81 (~ -- ~ / 6  ~ qo (.) d./qo (~, 
0 

(29)  
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and in the second 
77 

20. + 

I/s ~ (~0-+ 12o,(u--?,) 

d .  ,6.~ (7) = ,~ (~ + V~ ( i )  + 12o, ( t -  t,). + qo (u) Q,z ~s~ (u) " 

(30) 

Calculation of the magnitude_of the surface heat entrainment h(t) is performed until the 
integrand is non-negative, i.e., t ! t**. 

Represented in Fig. i are results of computations of h(t**) as a function of D~ for a 
number of values of Q, for a fixed phase transition temperature e,. As the parameter D$ 
grows, starting with D$ = 0.i, the thickness of the entrained layer of material evidently 
increases abruptly, where all the more, the smaller the phase transition heat. An increase 
in 0~ results, respectively, in a reduction in h(t**) without altering the nature of the de- 
pendence on D~. 

The influence of the relationship of the relaxation time T T of the structural parameter 
X~ T~t and the position of the maximum of the deliverable heat fl6x qo(t) on the temperature 

distribution and stress in an elastic isotropic body can be investigated by solving the heat 
conduction and motion equations 

D~ O -k 0 = a~o/az~, (31) 

R2 (8 + O) = 02o/Oz 2 (32) 

with the boundary conditions 

[=0 o (z, o ) =  o, o (z, o )=  o, ~(z, o )=  o, b(z, o ) =  o; 

z = o - o o / o z  = qo + qo <7), (0, = 0; 

z--,- oo 0(z, 7)-+o, ~(z, ~)~o.  

(33) 

The solutions of (31) and (32) with the boundary conditions (33) have the form 

Dr qo(~--u) El(z, u)du; 

. p,z 
a(z. O= 2 zJ D r(D~-R z) D r - - R  o 

(34) 

R 2 "-{--u exp( 2 -v~ )dr  i -t-Dr(D~._Rz)2 exp(,D-~T~--Rz ) . ! ' q o ( v ) \ D r _ R e  

F1 (z, u) --- exp (-- 

F2(z, u) = exp ( 

X [FI (z, u) -- Fz (z, u)t du; 

1o 2D . ' 

u--zP, (u- -zR~ , 
)1~ ) 

(35) 

F,(z, u) # 0 only for u > zD T and F2(z, u) # 0 only for u > zR. 

If the speed of sound V~ agrees with the rate of heat propagation, i.e., Ra/D~ = I, or 
the rate of heat propagation is infinite (D~ = 0), then the solution of (31) and (32) are 
easily obtained by an analogous means by using the Laplace transform. 

Represented in Fig. 2 are results of temperature computations for the time ~ = 5 when 
practically all the_ energy supplied is absorbed by the body. The degree of heat flux penetra- 
tion here is z = t/D T. As D~ diminishes the solution of the hyperbolic heat conduction equa- 
tion approximates the solution of the parabolic equation (D~ = 0). Computations show that 
DT2 = 0 can be assumed for D T2 < 0.001 for the solution of heat conduction equations for any 
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Fig. i. Dependence of the magnitude of the surface mass entrainment h(t**) on the 
parameter D~ for 0~ = 0 1 and m = 2 for a number of values of Q,: i) Without taking 
account of the influence of the change in the structural parameters x(S); 2) with 
the influence of this change taken into account; I, II, III are Q, = 0.i, 0.3, and 
0.5, respectively. 

Fig. 2. Temperature distribution in the body for m 2 for t = 5: i) From (34); 2) 
parabolic temperature distribution (D~ = 0); I, II are D 2 = I, i0, respectively. 

-2 L a - ~  b 

Fig. 3. Stress distribution in an ~lastic body for RZ/D~ = i0 
(a) and R2/D~ = 0.i (b), m = 2 for t = 5: i) from (35); 2) cor- 
responding to a parabolic temperature distribution (D~ = 0): a) 
I, II, III are R 2 = I, I0, i00; b) I, II are R 2 = i, 10. 

time t. Represented in Fig. 3a are results of stress computations at that same time for R2/ 
2 = I0 (the sound speed is less than the heat propagation rate) and the same values of the D T 

parameter D~, as in Fig. 2. It is seen from the results represented that the positions of 
the extremums of the appropriate stresses are nearby, however the difference in their magni- 
tude grows substantially as the parameter R 2 increases�9 A sharp change in the derivative 
@o/%z corresponds to a point with the coordinate z = t/R. If the sound speed is greater than 
the heat propagation rate (R2/D~ = 0.I) then the positions of the stress extremums are far 

2 # 0 do not apart for identical values of R2 (Fig. 3b), while the stresses for D~ = 0 and D T 
differ so radically�9 Moreover, if the sound speed is less than the heat propagation rate 
(R=/D~ > I), then the absolute values of the stresses exceed the corresponding values for 
R2/D~-< i significantly. 

(~). 
Taking account of the material viscosity (the structural parameter Xi j ) results in a 

certain reduction in the stress values without changing either the positions of the extremums 
or the points of an abrupt change in the derivatives Bo/@z. To obtain a qualitative estimate 
of the influence of the structural parameter X~ ) on the stress, the homogeneous stress state 

13 
can be considered when the deformation changes according to the law 

(0= A4~ ~ exp (--m0 (36) 

In this case the stress will be 

= -- -- exp 2 ~(0 e(0 ~ ~(0 ! , D~ 
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Fig. 4. Dependence of the stress on D~ for the 
times ~ = i (I) and ~ = 2 -- /2 (2) for m - 2; 
I, II, III- 8 = 0; 0.05 and 0.i. 

Represented in Fig. 4 are certain results of computing o(t) as a function of D o for two 
times correspon_ding to the maximum deformation (~ = i) and the maximal value of the rate of a 
train change (t = 2 -- /~. For ~ = 0 the material becomes linea_rly elastic. If D~ § ~, then 
the first factor under the ingegral in (37--) tends to one and o(t) § e(~). For D~ § 0 the 
stress tends to the steady state value o(t) = (i -- 8)e(~). In those cases when D~ is commen- 
surate with the magnitude of the time interval under consideration, taking account of the re- 
laxation effects evidently is necessary for pulse loading. As follows from Fig. 4, these ef- 
fects appear most clearly for large values of 8. 

NOTATION 

A=A(~hz, T, X (s), X~ ), X~), ~k) is the free energy; S= s(ekz, T,X (s), %~T), Z~ )' ~h) is the entropy; 

~i~=~ij(ehz, T, Z (s), X~)~ ~), ~h) are the stress tensor components; q~=qi(%z, T, %(s), X~T), X~), ~) are 

the components of the heat flux density vector; eij- are small strain tensor components; T, 
To, are the temperature and initial temperature; X [S) is the structural parameter character- 

(T) (o) 
izing the disorder of the structure (phase transitions, cumulative damage, etc.); X k , Xk Z 

are structural parameters characterizing the heat propagation and stresses, respectively; 
% k = T k is the temperature gradient; ( ),k = 3/3Xk; Xk are Cartesian coordinates (i, j, k, 

= I, 2, 3); (.) = 3/~t; t is the time; p is the density; U is the internal energy per unit 
mass; r is the mass density of internal heat liberation; e(T) are components of the small 

ij 
temperature strain tensor; B(T) is the thermal part of the internal energy; TS, TT, T are 

the relaxation times of the structural parameters x(S), xk(T)' and Xk Z(a), respectively; H(T -- 

T,) is the Heaviside function; T, is the temperature of the phase transition of the first kind; 

k~ ) =--*ik~(~)ZhJ is the heat conduction tensor; c s = -- T32B/3T 2 is the specific heat under con- 

stant strain; a = k(T)/(pcc) is the thermal diffusivity; to is the coordinate of the maximum 
of the delivered heat flux Qo(t); Vo = #(k + 2U)/p is the sound speed in the material; X, ~, 
are elastic constants; M = mm/(m-- i)!; T* = At~ at~o/~(T); DT2 _- rT/to; qo = Qo/(At~); e = (T -- 

To)/T*; R 2 = a/(toV2); ~ = t/to; z = x/alamo; q = o~/(3X + 2u)~T*; ~ is the temperature coef- 
g 

ficient of linear expansion; Io( ) is the modified Bessel ~ function err(g)= 2 lexp(_x2)d x is 
]/~ 

the error function; erfc(y) = 1 -- erf(y); 8,, Q8 are the dimensionless temperature and heat of 
the phase transition of the first kind; D~ = Ts/to; 8 = (R, + 2R=)/(X + 2~); Rijkl = Rx6ij~kZ+ 

R2(6ik~jZ +~Z~k); D 2~ = To/to; O = O~,/[(k + 2~)A,t~] are dimensionless stresses (Fig. 4). 
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THERMAL STRESSES AND DEFORMATIONS IN A PLATE SUBJECT TO 

THEACTION OF CONCENTRATED ENERGY FLOWS 

G. I. Rudin UDC 535.211:539.371 

A two-dimensional problem is solved concerned with the determination of temperature 
and stress fields in a plate subject to heating by a radiative flow of Gaussian 
type. 

Nonhomogeneous radiative heating of a plate induces thermal stresses and deformations 
in the plate. If the intensity of the radiative flow is sufficiently high, the stresses may 
exceed the limit of strength of the plate material, giving rise to irreversible structural 
changes in the plate. In particular, the role of the thermal deformations manifests itself 
in a twisting of the plate surface. If the plate is an element of an optical system, this ef- 
fect leads to a distortion in the structure of the beam being transmitted, for example, to 
a lack of focus. There is also increased interest in the study of stresses and deformations 
under the action of concentrated flows of radiation with a Gaussian distribution of intensity 
along a radius when the radius of the zone of exposure is equal in order of magnitude or sig- 
nificantly less than the plate thickness. In this case the spatial distribution of stresses 
and deformations is two-dimensional and differs essentially from the one-dimensional approx- 
imation. 

In [I] a two-dimensional problem was treated concerned with the determination of the 
stresses in a free plate under the action of a thermal surface source. At the same time, 
there is considerable practical interest in the study of stress and deformation fields when 
the thermal source is a volume source. Such sources are formed, in particular, under the ac- 
tion of a laser beam on a nonmetallic material, and the action of an electron-beam flow on 
metal. In these cases, a thermal source is formed in the plate whose strength depends expon- 
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